Transgenic animals


Introduction of Transgenic animals
Definition
A transgenic animal is one whose genome has been altered by the transfer of a gene or genes from another species or breed.

Importance
Transgenic animals are routinely used in the laboratory as models in biomedical research. Over 95 per cent of those used are genetically modified rodents, predominantly mice. They are important tools for researching human disease, being used to understand gene function in the context of disease susceptibility, progression and to determine responses to a therapeutic intervention.

Mice have also been genetically modified to naturally produce human antibodies for use as therapeutics. Seven out of the eleven monoclonal antibody drugs approved by the FDA between 2006 and 2011 were derived from transgenic mice.

Transgenic farm animals are also being explored as a means to produce large quantities of complex human proteins for the treatment of human disease. Such therapeutic proteins are currently produced in mammalian cell-based reactors, but this production process is expensive. In 2008, for example, the building of a new cell-based manufacturing facility for one therapeutic protein was estimated to cost over US$500 million. A cheaper option would be to develop a means to produce recombinant proteins in the milk, blood or eggs of transgenic animals. Progress in this area, however, has been slow to-date. Only two biomedical products have so far received regulatory approval. The first is human antithrombin III, a therapeutic protein produced in the milk of transgenic goats, which is used to prevent clots in patients with hereditary antithrombin deficiency receiving surgery or undergoing childbirth. A relatively small herd of goats (about 80) can supply enough human antithrombin III for all of Europe. The second product is a recombinant human C12 esterase inhibitior produced in the milk of transgenic rabbits. This is used to treat hereditary angiodema, a rare genetic disorder which causes blood vessels in the blood to expand and cause skin swellings.
Discovery
The ability to produce transgenic animals is reliant on a number of components. One of the first things needed to generate transgenic animals is the ability to transfer embryos. The first successful transfer of embryos was achieved by Walter Heape in Angora rabbits in 1891. Another important component is the ability to manipulate the embryo. In vitro manipulation of embryos in mice was first reported in the 1940s using a culture system. What is also vital is the ability to manipulate eggs. This was made possible through the efforts of Ralph Brinster, attached to the University of Pennsylvania, who in 1963 devised a reliable system to culture eggs, and that of Teh Ping Lin, based at the California School of Medicine, who in 1966 outlined a technique to micro-inject fertilised mouse eggs which enabled the accurate insertion of foreign DNA.

The first genetic modification of animals was reported in 1974 by the virologist Rudolph Jaenisch, then at the Salk Institute, and the mouse embryologist Beatrice Mintz at Fox Chase Cancer Center. They demonstrated the feasibility of modifying genes in mice by injecting the SV40 virus into early-stage mouse embryos. The resulting mice carried the modified gene in all their tissues. In 1976, Jaenisch reported that the Moloney Murine Leukemia Virus could also be passed on to offspring by infecting an embryo. Four years later, in 1980, Jon Gordon and George Scango together with Frank Ruddle, announced the birth of a mouse born with genetic material they had inserted into newly fertilised mouse eggs. By 1981 other scientists had reported the successful implantation of foreign DNA into mice, thereby altering the genetic makeup of the animals. This included Mintz with Tim Stewart and Erwin Wagner at the Fox Chase Cancer Center in Philadelphia; Brinster and Richard Palmiter at the University of Washington, Seattle; and Frank Costantini and Elizabeth Lacy at Oxford University.

Such work laid the basis for the creation of transgenic mice genetically modified to inherit particular forms of cancer. These mice were generated as a laboratory tool to better understand the onset and progression of cancer. The advantage of such mice is that they provide a model which closely mimics the human body. The mice not only provide a means to gain greater insight into cancer but also to test experimental drugs.
Application
Transgenic animals are animals (most commonly mice) that have had a foreign gene deliberately inserted into their genome. Such animals are most commonly created by the microinjection of DNA into the pronuclei of a fertilised egg which is subsequently implanted into the oviduct of a pseudopregnant surrogate mother. This results in the recipient animal giving birth to genetically modified offspring. The progeny are then bred with other transgenic offspring to establish a transgenic line. Transgenic animals can also be created by inserting DNA into embryonic stem cells which are then micro-injected into an embryo which has developed for five or six days after fertilisation, or infecting an embryo with viruses that carry a DNA of interest. This final method is commonly used to manipulate a single gene, in most cases this involves removing or 'knocking out' a target gene. The end result is what is known as a ‘knockout’ animal.

Since the mid-1980s transgenic mice have become a key model for investigating disease. Mice are the model of choice not only because there is extensive analysis of its completed genome sequence, but its genome is similar to the human. Moreover, physiologic and behavioural tests performed on mice can be extrapolated directly to human disease. Robust and sophisticated techniques are also easily available for the generic manipulation of mouse cells and embryos. Another advantage of mice is the fact that they have a short reproduction cycle. Other transgenic species, such as pig, sheep and rats are also used, but their use in pharmaceutical research has so far been limited due to technical constraints. Recent technological advances, however, are laying the foundation for wider adoption of the transgenic rat.

Transgenic rodents play a number of critical roles in drug discovery and development. Importantly, they enable scientists to study the function of specific genes at the level of the whole organism which has enhanced the study of physiology and disease biology and facilitated the identification of new drug targets. Due to their similarity in physiology and gene function between humans and rodents, transgenic rodents can be developed to mimic human disease. Indeed, an array of transgenic mice models have been produced for this purpose. Mice are being used as models, for example, to study obesity, heart disease, diabetes, arthritis, substance abuse, anxiety, ageing, Alzheimer's disease and Parkinson's disease. They are also used to study different forms of cancer. In addition, transgenic pigs are being investigated as a source of organs for transplants, which if proven clinically safe could overcome some of the severe donor organ shortages. The development of transgenic animals has recently been transformed by the emergence of the new gene editing tool CRISPR which greatly reduced the number of steps involved in the creation of transgenic animals, making the whole process much faster and less costly.


This section on transgenic mice was jointly written by Lara Marks and Dmitriy Myelnikov. For more information see D. Myelnikov, 'Transforming mice: technique and communication in the making of transgenic animals, 1974-1988', unpublished PhD, Cambridge University, 2015.
Transgenic animals: timeline of key events
Date
Event
People
Places
23 Jun 1925
Oliver Smithies was born in Halifax, United Kingdom
Smithes
University of Washington, University of North Carolina
1929
Jackson Memorial Laboratories established to develop inbred strains of mice to study the genetics of cancer and other diseases
Jackson Memorial Laboratoroies
19 Aug 1929
Frank Ruddle was born in West New York, New Jersey
Yale University
18 Sep 1951
Anthony J Clark was born in Blackpool, UK
Anthony Clark
Roslin Institute
1974
First publication on inserting foreign DNA into mice
Jaenisch, Mintz
Salk Institute, Fox Chase Institute for Cancer Research
September 1980
Scientists reported the first successful development of transgenic mice
Barbosa, Gordon, Plotkin, Ruddle, Scangos
Yale University
November 1980
Technique published using fine glass micropipettes to inject DNA directly into the nuclei of cultured mammalian cells. High efficiency of the method enables investigators to generate transgenic mice containing random insertions of exogenous DNA.
Capecchi
University of Utah
5 Nov 1981
First successful transmission of foreign DNA into laboratory mice
Constantini, Lacy
Oxford University, Yale University
December 1982
Giant mice made with the injection of rat growth hormone
Brinster, Palmiter
University of Pennsylvania, University of Washington Seattle
1983
Course started in the molecular embyology of mice
Costantini, Hogan, Lacy
Cold Spring Harbour Laboratory, NIMR, Sloan Kettering Cancer Research Center, Columbia University
1985
First transgenic mice created with with genes coding for both the heavy and light chain domains in an antibody.
Kohler, Rusconi
Max-Planck Institute
6 Nov 1987
Publication of gene targeting technique for targetting mutations in any gene
Thomas, Capecchi
University of Utah
1988
Patent application filed for a method to create transgenic mice for the production of human antibodies
Bruggeman, Caskey, Neuberger, Surani, Teale, Waldmann, Williams
Laboratory of Molecular Biology, Babraham Institute, Cambridge University
12 Apr 1988
OncoMouse patent granted
Leder, Stewart
Harvard University
12 Jun 1992
First transgenic mouse model created for studying link between DNA methylation and disease
Li, Bestor, Jaenisch
Whitehead Institute for Biomedical Research
1994
First transgenic mice strains reported for producing human monoclonal antibodies
Bruggemann, S.Green, Lonsberg, Neuberger
Cell Genesys, GenPharm,
5 Jul 1996
Dolly the sheep, the first cloned mammal, was born
Wilmut, Campbell
Roslin Institute
9 Jul 1997
Birth of first sheep cloned with human genes
Schnieke, Kind, Ritchie, Mycock, Scott, Wilmutt, Colman, Campbell
PPL Therapeutics, Roslin Institute
14 Feb 2003
Dolly the sheep, the first cloned mammal, died
Wilmut
Roslin Institute
12 Aug 2004
Anthony J Clark died
Anthony Clark
Roslin Institute
September 2006
First fully human monoclonal antibody drug approved
Agensys, Amgen
2007
Nobel Prize for Physiology for Medicine awarded for discoveries enabling germline gene modification in mice using embryonic stem cells
Capecchi, Evans, Smithies
University of North Carolina, University of Utah
10 Mar 2013
Frank Ruddle died in New Haven, Connecticut
Yale University
26 Oct 2013
Michael Neuberger died
Neuberger
23 Sep 2015
Beijing Genomics Institute announced the sale of the first micropigs created with the help of the TALENs gene-editing technique
Beijing Genomics Institute
5 Oct 2015
CRISPR/Cas9 modified 60 genes in pig embryos in first step to create organs suitable for human transplants
Church
Harvard University
10 Jan 2017
Oliver Smithies died
Smithies
University of Washington, University of North Carolina
20 Apr 2017
Diabetes research using transgenic mice shows the protein P2X7R plays important role in inflammation and immune system offering new avenue for treating kidney disease
Menzies
University of Edinburgh, University College London, Imperial College
23 Jan 2019
CRISPR-Cas9 used to control genetic inheritance in mice
Grunwald, Gntz, Poplawski, Xu, Bier, Cooper
University of California San Diego







Written By Lovepreet Singh Grewal
#lovepreetsinghgrewal #princegrewal

Comments

Popular posts from this blog

Blood group testing

MCQ for Nursing Entrance Exam with Answers: 1 ( Biology ) Medical

Study of compound microscope